A nonparametric feature for neonatal EEG seizure detection based on a representation of pseudo-periodicity.

نویسندگان

  • N J Stevenson
  • J M O'Toole
  • L J Rankine
  • G B Boylan
  • B Boashash
چکیده

Automated methods of neonatal EEG seizure detection attempt to highlight the evolving, stereotypical, pseudo-periodic, nature of EEG seizure while rejecting the nonstationary, modulated, coloured stochastic background in the presence of various EEG artefacts. An important aspect of neonatal seizure detection is, therefore, the accurate representation and detection of pseudo-periodicity in the neonatal EEG. This paper describes a method of detecting pseudo-periodic components associated with neonatal EEG seizure based on a novel signal representation; the nonstationary frequency marginal (NFM). The NFM can be considered as an alternative time-frequency distribution (TFD) frequency marginal. This method integrates the TFD along data-dependent, time-frequency paths that are automatically extracted from the TFD using an edge linking procedure and has the advantage of reducing the dimension of a TFD. The reduction in dimension simplifies the process of estimating a decision statistic designed for the detection of the pseudo-periodicity associated with neonatal EEG seizure. The use of the NFM resulted in a significant detection improvement compared to existing stationary and nonstationary methods. The decision statistic estimated using the NFM was then combined with a measurement of EEG amplitude and nominal pre- and post-processing stages to form a seizure detection algorithm. This algorithm was tested on a neonatal EEG database of 18 neonates, 826 h in length with 1389 seizures, and achieved comparable performance to existing second generation algorithms (a median receiver operating characteristic area of 0.902; IQR 0.835-0.943 across 18 neonates).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Newborn EEG Seizure Detection Based on Interspike Space Distribution in the Time-Frequency Domain

This paper presents a new time-frequency based EEG seizure detection method. This method uses the distribution of interspike intervals as a criterion for discriminating between seizure and nonseizure activities. To detect spikes in the EEG, the signal is mapped into the time-frequency domain. The high instantaneous energy of spikes is reflected as a localized energy in time-frequency domain. Hi...

متن کامل

Epileptic seizure detection based on The Limited Penetrable visibility graph algorithm and graph properties

Introduction: Epileptic seizure detection is a key step for both researchers and epilepsy specialists for epilepsy assessment due to the non-stationariness and chaos in the electroencephalogram (EEG) signals. Current research is directed toward the development of an efficient method for epilepsy or seizure detection based the limited penetrable visibility graph (LPVG) algorith...

متن کامل

Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier

Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...

متن کامل

Epileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier

Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...

متن کامل

A Novel Automatic Neonatal Seizure Detection System

A novel neonatal seizure detection system is proposed including work in the areas of Independent Component Analysis, feature extraction, probability and classification networks. The system comprises of a preprocessing stage to reduce the effect of EEG artifacts and incorporate multichannel analysis and data reduction. A feature extraction stage examines the EEG using techniques from various sig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical engineering & physics

دوره 34 4  شماره 

صفحات  -

تاریخ انتشار 2012